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1 Why We Need Explainable Al?

The reliability and security of agents’ decisions are the core challenges in their
practical applications, which directly determine whether they can be reliably
deployed in the real world and win the trust of users.
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1 What's Attribution?

An Example of Image Attribution: The main objective in attribution techniques
is to highlight the discriminating variables for decision-making.
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1 Evolution of Attribution Techniques
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1 Challenges of Attribution

Deng et al. formulate the model’'s decision process using a Taylor expansion.
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Deng, Huiqi, et al. "Unifying fourteen post-hoc attribution methods with taylor interactions." TPAMI 46.7 (2024): 4625-4640.



1 Challenges of Attribution

Interaction: The nonlinear relationship among input elements. In general, the
stronger the nonlinearity, the more complex the interaction is considered [12],
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The more combinational effects that exist (i.e., @ ), the more complex the
interactions are considered, and consequently, the more difficult attribution becomes.

[1] Chen, Lu, et al. “Can LLMs Reason Soundly in Law? Auditing Inference Patterns for Legal Judgment." /ICLR 2026.
[2] Deng, Huiqi, et al. "Unifying fourteen post-hoc attribution methods with taylor interactions." TPAMI 46.7 (2024): 4625-4640.



1 Overview of This Talk
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This framework summarizes the main research pipeline from explainable attribution
mechanisms to attribution-guided learning for reliable multimodal models.



2 Subset Ranking-based Attribution

Divide the image into a set of small sub-regions and ranking the
sub-regions according to their importance.

» Reformulate the attribution problem as a

submodular subset selection problem; L RenigN
st ” ) &3
» Employ regional search to expand the sub-

region set to alleviate the insufficient T
4 4 4 . combination
dense of the attribution region; , , Subset Ranking-based Attribution
»A novel submodular mechanism is
constructed to limit the search for regions
with wrong class responses.



2 Subset Ranking-based Attribution — Method
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* Ruoyu Chen, et al. “Less is More: Fewer Interpretable Region via Submodular Subset Selection.” ICLR 2024. (Oral Presentation, 1.16%)
* Ruoyu Chen, et al. “Less is More: Efficient Black-box Attribution via Minimal Interpretable Subset Selection.” Preprint 2025.



2 Subset Ranking-based Attribution — Method

Strong combinatorial effects Limited marginal impact
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* Ruoyu Chen, et al. “Less is More: Efficient Black-box Attribution via Minimal Interpretable Subset Selection.” Preprint 2025.



2 Subset Ranking-based Attribution — Method
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Ruoyu Chen, et al. “Less is More: Fewer Interpretable Region via Submodular Subset Selection.” ICLR 2024. (Oral Presentation, 1.16%)
Ruoyu Chen, et al. “Less is More: Efficient Black-box Attribution via Minimal Interpretable Subset Selection.” Preprint 2025.




2 Subset Ranking-based Attribution — Evaluation Metrics

Faithfulness Evaluation Metrics

Deletion AUC score Deletion (low AUC = better faithfulness)

Deletion AUC measures the decrease in the model score m
when important variables are set to a baseline state. . ; w
Intuitively, a sharp drop indicates that the explanation s b w
method has effectively identified the variables that are _os \ .
critical to the model’s decision. t

Deletion® = f (x[xuzxo])

% of image removed

Insertion* (high AUC = better faithfulness)
Insertion AUC score

Insertion AUC follows the reverse procedure of Deletion, w
beginning with a baseline image and gradually inserting

the most important variables. A faster increase in the o6 .

model score indicates that the explanation method more oy
accurately identifies decision-relevant evidence. 02
0.0

Insertlon(k) — f(x[Xﬁ=xO]) o0 o2 %o?i?naoe re\?:aled e H0

Petsiuk, Vitali, Abir Das, and Kate Saenko. "Rise: Randomized input sampling for explanation of black-box models.” BMVC. 2018.



2 Subset Ranking-based Attribution — Evaluation Metrics

Location Metrics
Explanation A Explanation B

Point Game

PG accuracy is computed by locating the
most salient coordinate in the attribution
map and recording a hit if it falls within the
ground-truth object region (either a bounding
box or an instance mask), after which the

. : . : he hi The most salient point is located The most salient point is located
flngl score is obtained .by averaging the hit inside the explained target object.  outside the explained target object.
indicator over all test objects. ) P ]

[ Better explanation under PG metric ] [ Poor explanation under PG metric ]

Note that this metric is only meaningful when
the model achieves sufficiently strong
performance and remains free of bias.

Zhang, Jianming, et al. "Top-down neural attention by excitation backprop." International Journal of Computer Vision 126.10 (2018):
1084-1102.



2 Subset Ranking-based Attribution — Experiments

Various Attribution Methods
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* Ruoyu Chen, et al. “Less is More: Fewer Interpretable Region via Submodular Subset Selection.” ICLR 2024. (Oral Presentation, 1.16%)
* Ruoyu Chen, et al. “Less is More: Efficient Black-box Attribution via Minimal Interpretable Subset Selection.” Preprint 2025.



2 Subset Ranking-based Attribution — Experiments

Interpreting Correct Prediction
(Insertipn AUC score T)
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Phenomenon: The larger the model and pre-training scale, the more wrong the prediction results are,
the more complex the internal interactions are, and the more difficult the attribution is.

Ruoyu Chen, et al. “Less is More: Fewer Interpretable Region via Submodular Subset Selection.” ICLR 2024. (Oral Presentation, 1.16%)
Ruoyu Chen, et al. “Less is More: Efficient Black-box Attribution via Minimal Interpretable Subset Selection.” Preprint 2025.



2 Subset Ranking-based Attribution — Experiments

Alleviate the problem of insufficient granularity of attribution regions, thereby improving the fidelity of existing
attribution algorithms (deletion\insertion) by 30.9% and 41.7%; discover the cause of model misprediction, and

improve attribution performance (highest confidence\insertion) by 63.8% and 127.2%
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Ruoyu Chen, et al. “Less is More: Fewer Interpretable Region via Submodular Subset Selection.” ICLR 2024. (Oral Presentation, 1.16%)
Ruoyu Chen, et al. “Less is More: Efficient Black-box Attribution via Minimal Interpretable Subset Selection.” Preprint 2025.



2 Subset Ranking-based Attribution — Experiments

O On Grounding DINO, the faithfulness of MS COCO, LVIS, and RefCOCO is improved
by 23.7%, 31.6%, and 20.1%, respectively.
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Ruoyu Chen, et al. “Interpreting Object-level Foundation Models via Visual Precision Search.” CVPR 2025. (Highlight, 2.98%)
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2 Subset Ranking-based Attribution — Experiments

O Explaining Failures (Hallucinations): Explaining failure examples in visual localization and object
detection tasks, outperforming existing methods on multiple evaluation metrics.

Visual Grounding Task: Insertion 0.7477

Attribution Map Searched Region 1.0
Table 3. Insertion AUC scores and the average highest score on » \ > i ®os
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- ) O 0.2
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SSGrad-CAM++ [46] | 0.1590 0.2837 0.3266 B
RefCOCO[17] D-RISE [31] 0.3486 0.4787 0.6096 =
(REC task) D-HSIC [29] 0.2274 0.3488 0.4495 Object Score: 0.84 0.0 0.2 . 04 0.6 08 1.0
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plaining successful rate (ESR) on the MS-COCO and the LVIS O B4
validation sets for misclassified samples using Grounding DINO. g 'go 5 /\'\
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Grad-CAM [35] 0.1091 0.1478 0.3102 38.38% Misclassified Attribution Map Searched Region Insertion 0.6464
SSGrad-CAM++ [46] | 0.0960 0.1336 0.2952 33.51% 1.0
MS COCO [23] D-RISE [31] 0.2170 0.2661 0.3603 50.26% ) N Ry ©
(Detection task) ~ D-HSIC [29] 01771 0216l 03143 34.59% = A e e o 508
ODAM [50] 0.1129 0.1486 0.2869 32.97% = O 06
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ODAM [50] 00575 0.0954 0.1520 9.21% Wrong class: Trampoline True class: Stepladder Object Score: 0.74 0.0 0.2 0.4 0.6 0.8 1.0
Ours 0.1776 0.2190 0.2606 53.29% PCT. of image revealed

Ruoyu Chen, et al. “Interpreting Object-level Foundation Models via Visual Precision Search.” CVPR 2025. (Highlight, 2.98%)




2 Explaining Autoregressive MLLM
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Ruoyu Chen, et al. “Where MLLMs Attend and What They Rely On: Explaining Autoregressive Token Generation.” Preprint 2025.




2 Explaining Autoregressive MLLM — Method

Multimodal LLM Generation
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Ruoyu Chen, et al. “Where MLLMs Attend and What They Rely On: Explaining Autoregressive Token Generation.” Preprint 2025.




2 Explaining Autoregressive MLLM — Sentence-level Explanation

Image Caption Interpretation
LLaVA-CAM GOS++ (w/ GNC) EAGLE (Ours)
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Ruoyu Chen, et al. “Where MLLMs Attend and What They Rely On: Explaining Autoregressive Token Generation.” Preprint 2025.




2 Explaining Autoregressive MLLM — Sentence-level Explanation

Visual Question Answering Interpretation
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Ruoyu Chen, et al. “Where MLLMs Attend and What They Rely On: Explaining Autoregressive Token Generation.” Preprint 2025.




2 Explaining Autoregressive MLLM — Word-level Explanation

LLaVA-CAM IGOS++ (w/ GNC) TAM EAGLE (Ours)
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Ruoyu Chen, et al. “Where MLLMs Attend and What They Rely On: Explaining Autoregressive Token Generation.” Preprint 2025.

A blue and white train is arriving at a station
with a " 3 " sign on the platform .




2 Explaining Autoregressive MLLM — Explaining Hallucination

; w4
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scene. Yes. There is a spoon visible on the plate,

partially obscured by the food.
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2 Explaining Autoregressive MLLM — More Tasks

Long-horizon reasoning explanation

Q: In which country is this event taking place?
Give me the detailed reasoning process.

3

(Rt (BioviEes) § The the |
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@8R - This suggests (NN [
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Video-based explanation

Q: Describe the image in one factual English
sentence of no more than 20 words. Do not include
information that is not clearly visible.

frame 1 frame 3

frame5
-

frame 7 frame 10

@ oo 0 0 B o G G
stands - .. couch .

Ruoyu Chen, et al. “Where MLLMs Attend and What They Rely On: Explaining Autoregressive Token Generation.” Preprint 2025.




2 Explaining Autoregressive MLLM — API Explanation
GPT-5.2 @ Qwen 2.5 VL

Q: Describe the image in one factual English Q: Describe the image in one factual English
sentence of no more than 10 words. Do not sentence of no more than 20 words. Do not
include information that is not clearly visible. include information that is not clearly visible.

T T T
“bananzs i

Ruoyu Chen, et al. “Where MLLMs Attend and What They Rely On: Explaining Autoregressive Token Generation.” Preprint 2025.




2 Explaining Autoregressive MLLM — Acceleration

Q: Describe the image in one factual English sentence of no more than 20 words. Do not
include information that is not clearly visible
A: A cat sits on a branch among green bananas and large leaves against a clear blue sky.

Greedy Search: 514.5s Early Stop (w/ Sliding window): 25.6 s

Ruoyu Chen, et al. “Where MLLMs Attend and What They Rely On: Explaining Autoregressive Token Generation.” Preprint 2025.




2 Explaining Autoregressive MLLM — Shortcut Discovery

Liberty is holding
_a torch?

" Q: The Statue of |

J

Original Image

Augmentation Corrected Target Score
1.0

AV A

o o
o

Corrected Score
© o
oS
7—<
-

N

Original answer: 0% 25% 50% 75% 100%
The image you provided shows the Statue of Liberty, but it Refove Blased:Reglon

does not depict her holding a torch. Instead, she is holding

a sword in one hand and a tablet in the other. The statue is

a symbol of freedom and democracy, representing the ideals
of the United States.

Augmented answer:

The image you provided shows the Statue of Liberty holding a
torch, which is indeed one of her most iconic symbols. The
torch represents enlightenment and freedom, symbolizing the
ideals of liberty and democracy that the statue stands for.
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3 Attribution-guided Model Training Enhancement
Conceptual:

L = Lask(fo(X),Y) + 2 Lyuman(Afo (X)), V), Hy) + AL (A(fo(X;),Y))  Attribution rationality
- ' d - enhancement

task supervision human prior alignment attribution regularization

+ A38Leask(fo(Tau(A X, Y ), Y) Model performance

N

\ attribution—guided' data augmentation len hancement
|
Feedback
Revise mechamsm Accurately

defects locate defects
6 Loop 3
Input o
Attribution

Attribution-guided model training enhancement, using attribution methods to guide model
training, so as to improve the rationality of model attribution or improve model performance.




3 Prior-Aligned Training with Attribution Constraints

* Reliable models should not only predict correctly, but also justify decisions
with acceptable evidence.

« The causal reasonableness of model behavior can be regulated through
constraints induced by human prior knowledge.

Image Classification  Attribution Map Attribution Map
LR RS
NS ..Q_ ).; |i> |:> \/ Boat |$
Input Image v Reasonable
~ A
(Prior- -Aligned Training —
Attribution 7]
Feedback Constraints § >
= o
e\ B g
[~}
8
. J E¢
Attribution Map V
= w e
(5] R Ansan
sEmLpTAnITeEan | EFTLREANITAMSR
Input Image X Unreasonable [y Reasonable

Ruoyu Chen, et al. Where Not to Learn: Prior-Aligned Training with Subset-based Attribution Constraints for Reliable Decision-Making. Preprint 2026.




3 Prior-Aligned Training with Attribution Constraints

« When attribution methods are sufficiently faithful, they can be used to assess whether model

decisions align with human cognition.

 When model decisions conflict with human common sense or perception, attribution helps
identify and suppress untrustworthy predictions.

A training batch contains
5" bsamples.

Lhuman = ET(Si) ) I(Si € Hi)
i=1' /

l J
I I

attribution value of the most a binary indicator denoting
important subregion whether s; is contained in
the human-prior region

Physical interpretation: For each training sample i, no
penalty is applied when the most important attribution
region s; lies within the human-prior region. Otherwise,
its explanatory contribution is constrained by
suppressing the corresponding submodular value F(s;).

2

Suppress this
region activation

Suppress this No intervention
region activation required

(o}
]
-—
(V2]
(@)
c
c
©
—

L4 “a™ Log

Label: dining table  Training Step 1’s Training Step 2’s
attribution map attribution map

Training Step N’s

attribution map

If the most important attribution region is outside the human
prior, its activation is iteratively suppressed while other regions
remain unchanged; once it falls within the prior region, no
further constraint is applied.
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3 Prior-Aligned Training with Attribution Constraints

Table 1. Evaluation of attribution-based prior alignment methods for image classification models on the Saliency-Bench and ImageNet-S
datasets. Both model performance (accuracy) and decision rationality are reported, with rationality measured by the Point Game and
accuracy conditioned on successful Point Game outcomes.

Datasets Human Prior Models Methods Attributions | Top-1 Acc. Top-2 Ace. | Point Game | Top-1 Acc. (PG=1) | Training Time / Epoch
Fine-tuning - 0.6076 0.7847 0.5231 0.9044 43s
= =g = am RRR (Ross et al., 2017 Input Gradient |  0.6030 0.7821 0.5253 0.8943 1m 47s
vailuation on mage assirtication radio oy, XIL(Schmowskiclal 2020) GradECLIP | 06400 07891 05327 0.9045 1m 21
) wtal. 202 2
——— MEGL (Zhang et al.. 2024)  Grad-ECLIP | 0.6354 8180 0.5318 0.9004 Im 48s
Ours LIMA 0.6551 0.8264 0.5648 09192 7m 50s
Fine-tuning - 0.5150 0.7350 0.4363 0.7786 37s
Saliency-Bench e VAT (base) RRR (Ross et al., 2017 Input Gradient 0.5370 0.7512 0.4509 0.6530 Im 23s
. Zhane et al.. 2025b Masks (Dosovitskiy ot ol 2021y XIL.(Schramowski ctal 2020) ~ Grad-ECLIP |  0.5139 0.6968 0.4397 0.8087 1m 07s
> Our meth Od Im roves model ooy el e, 220 MEGL (Zhang et al.. 2024)  Grad-ECLIP | 0.5359 0.7338 0.5145 0.8242 Im11s
Ours LIMA 0.5694 0.7639 0.5463 0.8519 2m 42s
Fine-tuning - 0.5498 0.7569 0.6235 0.7694 35s
pe rfo r' ' | a n Ce . ResNet.101 RRR (Ross et al., 2017) Input Gradient |  0.5498 0.7604 0.6076 0.7857 565
He otal 2016 XIL (Schramowski et al.. 2020)  Grad-CAM 0.5521 0.7616 0.6725 0.8679 41s
R MEGL, (Zhang et al.. 2024) Grad-CAM 0.5451 0.7662 0.6315 0.8344 47s
» It also enhances the causal ous bua | osmo o | eoms | o im0t
Fine-tuning - 0.7969 0.8888 0.7001 0.7093 2m 18s
amw RRR (Ross et al.. 2017 Input Gradient |  0.7898 0.8861 0.7051 0.7642 5m 43s
reasonanieness or moage cadioe ) XIL(Schrmowskiclal 2020) GradECLIP | 07807 08786 0.7535 0.8042 2m 42
) wal. 202 2
Radord et ol 202l MEGL (Zhang et al., 2024 Grad-ECLIP | 0.7857 0.8795 0.7556 0.7942 3m 05s
d - . Ours LIMA 0.7974 0.8895 0.7712 0.8377 8m 34s
eCI S I O n S . Fine-tuning - 0.6713 0.7728 0.8041 0.8762 Im 04s
ImageNet-S . RRR (Ross et al., 2017) Input Gradient 0.6868 0.7912 0.7923 0.8580 1m 30s
- Masks ViT (base) -
(Gao et al.. 2022) Dosovitskiy ot i 2001y XUL(Schramowskictal 2020) ~ Grad-ECLIP | 06952 0.7971 0.8035 0.8514 Im 14s
(Dosovitskiy et al.. 2021) MEGL (Zhang etal. 2024)  Grad-ECLIP | 0.6969 0.8024 0.8143 0.8654 Im 18s
Ours LIMA 0.7208 0.8087 0.8226 0.8878 2m 54s
Fine-tuning - 0.7071 0.8011 0.8453 0.8814 23s
e RRR (Ross et al., 2017 Input Gradient |  0.7073 0.8076 0.8364 0.8532 Im 10s
chfl j 2016 XIL (Schramowski et al.. 2020)  Grad-CAM 0.7225 0.8182 0.8491 0.8904 Im 14s
(He et al._ 2016) 2
MEGL (Zhang et al.. 2024) Grad-CAM 07212 0.8158 0.8303 0.8522 1m 29s
Ours LIMA 0.7245 0.8186 0.8672 0.9040 2m 39s
Finetuning MEGL Ours Finetuning
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3 Prior-Aligned Training with Attribution Constraints

Evaluation on GUI Agent
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{"thought™:"Tap the blogger's avatar above
a post to enter the blogger's homepage. The
avatar is usually at the top-right of the post.
By tapping it, the blogger's profile opens to
view more posts.","POINT":[484,450]}

{"thought™:"Tap the blogger's avatar
above a post to enter the blogger's
homepage. There are multiple blogger
avatars on the page to choose
from.","POINT":[484,300]}

Table 4. Evaluation on the GUI agent clicking task with AgentCPM-GUI. Standard SFT (LoRA) is compared with attribution-based

alignment (LoRA). Task performance is reported by click success rate and distance error, and reliability is measured by Point Game and
metrics conditioned on successful Point Game outcomes (click success rate and distance error when PG=1).

Methods

Task Performance
Click success rate (7) Distance error (].)

Point Game (7)

Reliability Metrics
Click success rate (PG=1) (7) Distance error (PG=1)

SFT (LoRA)
Ours (LoRA)

84.61% 94.71
89.23% 78.64

0.8153
0.8615

96.22% 7.11
100% 0.0

Ruoyu Chen, et al. Where Not to Learn: Prior-Aligned Training with Subset-based Attribution Constraints for Reliable Decision-Making. Preprint 2026.




3 Consistency between Decision and Attribution
SFT (LoRA) Ours

Evaluation on GUI Agent
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3 Failures
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uploader.","STATUS":"finish"}
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3 Consistency Between Attribution and Decision-making

True Decision

O We analyze the model’s
reasoning process
through attribution and
compare the resulting
attribution map with the

model’s decision outcome.

O Low consistency between
them implies a high
probability of erroneous
prediction, indicating
potential use for
hallucination detection.
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3 Counterfactual Data Augmentation

During data-driven training, the model may rely on a subset of underlying causes rather than
comprehensively capturing the full causal structure, which can result in biased representations and decisions.

Q Learning Only Limited of the Sufficient Causes FeW-Sh Ot Sce n eri es
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Why A But ‘ x
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Swan Head Fails to Recognize Swan

Multiple Causes for a Common Effect
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Ruoyu Chen, et al. Generalized Semantic Contrastive Learning via Embedding Side Information for Few-Shot Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. (2025).




3 Counterfactual Data Augmentation

Solution: We propose an interpretable feedback loop to make model training transparent, using
explainable methods to locate and correct potential model flaws. A counterfactual explanation approach is
designed to reveal bias information and refine the feature space through counterfactual augmentation.

Theoretically, the empirical risk is proven to decrease relative to the baseline: (1 - J1+£T> /IHS‘V/ 0,

Counterfactual Data Augmentation Fine-tuning
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Ground Truth ¢ ‘fp°°1 e T y P
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Ruoyu Chen, et al. Generalized Semantic Contrastive Learning via Embedding Side Information for Few-Shot Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. (2025).




3 Counterfactual Data Augmentation

Experimental results show state-of-the-art performance on few-shot detection benchmarks,
compatibility with multiple baselines and backbones (including CNNs and ViTs), and theoretical

guarantees on the generalization error bound.

TABLE 6
Few-shot object detection evaluation results on PASCAL VOC [27]. The evaluation metric adopts the mean average precision (mMAP@0.5). 1
denotes further fine-tuned on the novel categories.

Method Paper Year Backbone Base Detector Side Information | Novel Split 1 Novel Split 2 Novel Split 3
| 1 2 3 5 10 | 1 2 3 5 0 | 1 2 3 5 10

LSTD [7] AAAI 18 VGGNet-16 SSD N/A 82 1.0 12.4 29.1 38.5 11.4 3.8 5.0 15.7 31.0 12.6 8.5 150 273 36.3
FSRW [8] ICCV 19 DarkNet-19 YOLOV2 N/A 14.8 15.5 26.7 339 472 15.7 15.3 22.7 30.1 40.5 21.3 25.6 284 428 459
MetaDet-FRCN [77] ICCV 19 VGGNet-16 Faster R-CNN N/A 18.9 206 201 36.8  49.6 21.8 23.1 27.8 31.7 43.0 206 239 294 439 441
Meta R-CNN [78] ICCV 19 ResNet-101 Faster R-CNN N/A 19.9 255 35.0 457 51.5 10.4 19.4 29.6 34.8 454 143 18.2 275 412 48.1
RepMet [79] CVPR 19 InceptionV3 FPN+DCN N/A 26.1 329 34.4 386 413 172 221 23.4 28.3 35.8 275 31.1 31.5 34.4 37.2
NP-RepMet [80] NeurIPS 19 InceptionV3 FPN+DCN N/A 37.8 403 41.7 473 494 | 41.6 430 434 474 49.1 333 38.0 398 415 44.8
TFA wi/cos [9] ICML 20 ResNet-101 Faster R-CNN N/A 39.8 36.1 44.7 55.7 56.0 235 26.9 34.1 35.1 39.1 30.8 348 428 495 49.8
MPSR [81] ECCV 20 ResNet-101 Faster R-CNN N/A 41.7 425 514 55.2 61.8 244 293 39.2 39.9 478 356 418 423 480  49.7
Retentive R-CNN [82] CVPR 21 ResNet-101 Retentive R-CNN N/A 424 458 459 53.7 56.1 21.7 27.8 35.2 37.0 403 30.2 376 430 497 50.1
CME [83] CVPR 21 DarkNet-19 YOLOv2 N/A 41.5 475 50.4 582 60.9 272 302 414 425 46.8 343 39.6 451 48.3 51.5
FSCE [14] CVPR 21 ResNet-101 Faster R-CNN N/A 442 438 51.4 61.9 63.4 273 29.5 435 442 50.2 372 419 475 546 585
QA-FewDet [10] ICCV 21 ResNet-101 Faster R-CNN N/A 424 51.9 55.7 62.6 63.4 259 37.8 46.6 489 51.1 352 429 478 54.8 53.5
FSODvP [84] ICCV 21 ResNet-101 Faster R-CNN N/A 43.8 47.8 50.3 55.4 61.7 31.2 30.5 412 422 483 355 39.7 439 506 535
DMNet [16] T-Cyber. 22 ResNet-101 DMNet N/A 34.7 50.7 54.0 58.8 62.5 313 282 418 462 52.7 386 400 434 489 489
MRSN [85] ECCV 22 ResNet-101 Faster R-CNN N/A 47.6 486 578 619 62.6 31.2 38.3 46.7  47.1 50.6 355 309 456 544 574
Xiao et al. [11] TPAMI 23 ResNet-18 Faster R-CNN N/A 26.9 35.7 423 489 57.8 212 267 30.6 37.7 45.1 243 30.4 36.3 416  50.1
CKPC [86] TIP 23 ResNet-101 Faster R-CNN N/A 455 524 56.6 61.7 63.9 334 435 473 494 521 404 437 48.5 540 588
SRR-FSD [25] CVPR 21 ResNet-101 Faster R-CNN Word2Vec [41] 47.8 50.5 51.3 55.2 56.8 325 35.3 39.1 40.8 438 40.1 415 443 469 464
UA-RPN [47] ECCV 22 ResNet-50 Faster R-CNN ImageNet [48] 40.1 442 51.2 62.0 63.0 333 33.1 423 463 523 36.1 43.1 435 520  56.0
KD-TFA++ [42] ECCV 22 ResNet-101 Faster R-CNN PPC [43] 470 502 52.5 62.1 64.2 29.7 329 459 485 51.1 | 42.6 46.5 488 56.8 57.4
TFA++ w/ ours Our Method ResNet-101 Faster R-CNN Visual Attribute 49.6 53.2 544 63.3 652 30.0 353 473 477 53.2 | 402 442 504 569 59.0
FADI [17] NeurlPS 21 ResNet-101 Faster R-CNN WordNet [45] 50.3 54.8 54.2 59.3 63.2 30.6 350 403 428 48.0 45.7 49.7 49.1 550 596
Meta Faster R-CNN [12] AAAI 22 ResNet-101 Faster R-CNN N/A 43.0 545 60.6 66.1 65.4 27.7 35.5 46.1 47.8 51.4 406 464 53.4 599 586
Meta-DETR [13] TPAMI 22 ResNet-101 Deformable DETR N/A 406 514 58.0 59.2 63.6 37.0 36.6 437  49.1 54.6 416 459 52.7 589  60.6
LVC [87] CVPR 22 ResNet-101 Faster R-CNN N/A 54.5 532 58.8 63.2 65.7 32.8 29.2 50.7 498 50.6 484 5217 550 596 596
KFSOD [5] CVPR 22 ResNet-101 Faster R-CNN N/A 44.6 - 54.5 60.9 65.8 37.8 - 43.1 48.1 50.4 34.8 - 44.1 52.7 539
FCT [6] CVPR 22 PVTv2-B2-Li Faster R-CNN N/A 49.9 57.1 57.9 63.2 67.1 27.6 34.5 437 492 51.2 39.5 54.7 52.3 570 587
VFA [88] AAAI 23 ResNet-101 Meta R-CNN++ N/A 57.7 646  64.7 67.2 674 | 414 462 51.1 51.8 51.6 489 54.8 56.6 59.0 589
ICPE AAAI 23 ResNet-101 Meta R-CNN N/A 54.3 59.5 62.4 65.7 66.2 33.5 40.1 48.7 51.7 52.5 50.9 53.1 55.3 60.6  60.1
o-ADP [35] ICCV 23 ResNet-101 Faster R-CNN N/A 52.3 55.5 63.1 65.9 66.7 42.7 45.8 48.7 54.8 56.3 47.8 51.8 56.8 60.3 62.4
FS-DETR [89] ICCV 23 ResNet-50 DETR N/A 450 485 515 52.7 56.1 373 413 434  46.6 49.0 438 47.1 50.6 52.1 56.9
FPD [90] AAAI 24 ResNet-101 Meta-RCNN N/A 46.5 62.3 65.4 68.2 69.3 322 436 50.3 52.5 56.1 432 533 56.7 62.1 64.1
DeFRCN [15] ICCV 21 ResNet-101 Faster R-CNN ImageNet [48] 570 586 643 67.8 67.0 35.8 42.7 51.0 545 529 525 56.6 55.8 60.7 62.5
PTF+KI [91] TIP 22 ResNet-101 DeFRCN ImageNet [48] 570 623 63.3 66.2 67.6 | 42.8 44.9 50.5 52.3 522 50.8 56.9 58.5 62.1 63.1
MEDC [39] ECCV 22 ResNet-101 DeFRCN ImageNet [48] 634 663 67.7 69.4 68.1 42.1 46.5 534 55.3 53.8 56.1 583 590 622 63.7
NIFF-DeFRCN [37] CVPR 23 ResNet-101 DeFRCN ImageNet [48] 63.5 672 683 711 693 37.8 41.9 534 56.0 535 553 60.5 61.1 63.7 63.9
KD-DeFRCN [42] ECCV 22 ResNet-101 DeFRCN ImageNet [48], PPC [43] 58.2 62.5 65.1 68.2 67.4 37.6 456 520 546 53.2 53.8 571 580 624 622
Norm-VAE [40] CVPR 23 ResNet-101 DeFRCN ImageNet [48], Word2Vec [41] 62.1 649 678 69.2 67.5 399 468 544 542 53.6 582 603 61.0 640 655
MM-FSOD [26] ArXiv 22 ResNet-101 DeFRCN ImageNet [48], CLIP [44] 59.4 595 64.6 68.7 68.4 36.0 455 51.5 550 55.2 | 542 53.7 57.5 60.8 62.5
DeFRCN w/ ours Our Method ResNet-101 DeFRCN ImageNet [48], Visual Attribute 58.6 61.9 65.2 68.8 67.7 38.8 46.7 52.8 55.1 54.1 56.5 58.1 59.6 61.0 63.1
MFDC w/ ours Our Method ResNet-101 DeFRCN ImageNet [48], Visual Attribute | 64.9 67.3 67.8 70.5 70.3 | 429 484 53.9 55.5 53.9 594 620 612 648 65.8
DE-ViT't [38] ArXiv 23 ViT-L/14 Faster R-CNN LVD-142M [73] 433 527 56.9 65.5 68.4 279 34.4 51.6 60.2 65.2 49.7 60.5 61.8 64.1 64.8
DE-ViT w/ ours Our Method ViT-L/14 Faster R-CNN LVD-142M [73] 46.9 557 576 694 708 | 300 366 546 639 662 | 514 621 635 693 709
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Future Outlook

Anomaly Monitoring: Evaluate the reliability of the current model decision by
explaining whether the attribution is abnormal, and use online repair methods to
dynamically repair model defects at low cost.
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Thanks for listening!

Any questions?

Ruoyu Chen



